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We propose a model of weighted scale-free networks incorporating a stochastic scheme for weight assign-
ments to the links, taking into account both the popularity and fithess of a node. As the network grows, the
weights of links are driven either by the connectivity with probabipitpr by the fitness with probability 1
—p. Numerical results show that the total weight exhibits a power-law distribution with an exportat
depends on the probability. The exponentr decreases continuously psincreases. Fop=0, the scaling
behavior is the same as that of the connectivity distribution. An analytical expression for the total weight is
derived so as to explain the features observed in the numerical results. Numerical results are also presented for
a generalized model with a fitness-dependent link formation mechanism.
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Many complex systems, including social, biological, is a result of strong logarithmic corrections, and asymptoti-
physical, economic, and computer systems, can be studiezhlly (i.e., in the long time limit the weighted and un-
using network models in which the nodes represent the corweighted models are identicg27].
stituents and links or edges represent the interactions be- In real systems, one would expect that a link's weight
tween constituentsl,2]. In random graphg3,4] as well asin  and/or the growth rate in the number of links of a node
the small-world networkg5—7], the connectivity distribution depend not only on the “popularity” of the node represented
P(k), which is defined as the probability that a randomly by the connectivity, but also on some intrinsic quality of the
selected node has exackyedges, shows exponential decay. node. The intrinsic quality can be collectively represented by
However, empirical studies on many real networks showe@ parameter referred to as the “fitnesg28,29. Besides
that P(k) exhibits a power-law behavior in the tdil,2].  popularity, the competitiveness of a node may depend, taking
Networks with power-law connectivity distributions are for example a node being an individual in a certain commu-
called scale-free(SP networks. Examples of SF networks nity, on personality, survival skills, character, etc. A newly
include the World Wide Web8—10], scientific citationg11], added node may take into account one of these factors in
cells[12,13, the web of actor§14], and the web of human their decision on making connections with existing nodes
sexual contact$l5]. The first model of SF networks was and on the importance of each of the established links.
proposed by Baralsaand Albert(BA) [16]. In BA networks,  Clearly, there is always a spectrum of personality among the
two important ingredients are included, namely, the networksiodes and therefore a distribution in the fitness. While one
are continuouslygrowing by adding in new nodes as time may argue that factors determining the popularity may over-
evolves, and the newly added nodes greferentially at- lap with those in fitness, it is not uncommon that popularity
tachedto the highly connected nodes. The idea of incorpo-is not the major factor on the importance of a connection.
rating preferential attachment in a growing network has led=or example, we often hear that a popular person may actu-
to proposals of a considerable number of models of SF netlly have very few good friends, and an influential and pow-
works[17-23. erful figure in a network may often be someone very difficult

In most growing network models, all the links are consid-to work with. In this Rapid Communication, we generalize
ered equivalent. However, many real systems display differthe WSF model of YJBT to study the effects of fitness. In our
ent interaction strengths between nodes. In systems such amdel, the weights assigned to the newly added links are
the social acquaintance netwdR4], the web of scientists determined stochastically either by the connectivity with
with collaborationd25] and ecosystem®6], links between  probability p or by the fitness of nodes with probability 1
nodes may be different in their influence. Therefore, real-p. The scaling behavior of the total weight distribution is
systems are best described by weighted growing networkfound to depend sensitively on the weight assignment
with links of nonuniform strengths. Only recently, a class of mechanism through the parameger
models of weighted growing networks was proposed by The topological structure of our model follows that of the
Yook, Jeong, Baralsh, and Tu(YJBT) [27]. In the basic BA model of SF networkg16]. A small number n,) of
YJBT model of weighted scale-fre@/SH networks, both  nodes are created initially. At each time step, a new rjode
the topology and the weight are driven by the connectivitywith m (m=my,) links is added to the network. Thes#ginks
according to the preferential attachment rule as the networlill connect tom preexisting nodes according to the prefer-
grows. It was found that the total weight distribution follows ential attachment rule that the probabilifl; of an existing
a power lawP(w)~w™ 7, with an exponent different from  nodei being selected for connection is proportional to the
the connectivity exponeng. The difference in the exponents total number of linksk; that nodei carries, i.e.,
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mt links aftert time steps. Geometrically, the network dis- 104
plays a connectivity distribution with a power-law decay in 2 05 |
the tail with an exponeny= 3, regardless of the value af o
[16,30. 10° ¢
A weighted growing network is constructed by assigning 107 |
weights to the links as the network grows. To incorporate a 10 |
fithess-dependent weight assignment mechanism, a fithess 24
parameter,; is assigned to each nofi28,29. The fitnessy; 10° ¢ 50
is chosen randomly from a distributiga( ), which is as- 1010 , . ,
sumed to be a uniform distribution in the intery#,1] for 100 10! 102 108 104

simplicity. With probability p, each newly established link

j«1 is assigned a weighw;; (=w;;) given by W

FIG. 1. The weight distributiof®(w) as a function of the total

ki weight w on a log-log scale for different values op
Wi =—, (2 =0,0.1,0.5,1.0. The two solid lines are guides to the eye corre-
E K;/ sponding to the exponents=2.4 and 3.0, respectively.
{i'}

with a p-dependent exponerd. For p>0, > B, whereg
=1/2 is the exponent characterizing the dynamical behavior
of the connectivityk;(t) [16]. Forp=0, w;(#; ,t) shows the
same scaling behavior dg(t) with 6=8=1/2. For 0<p

<1, § also depends on the node’s fitnegs Thus, the total

whereZX ;. is a sum over thennodes to which the new node
j is connected. With probability 2 p, w;; is determined by
the fitness through

W = 7i &) weight actually shows a multiscaling dynamical behavior in
! > ' the range & p<1 [28].
o i The probability distributionP(w;;) of the weightsw;; is

also worth investigating. To suppress statistical fluctuations,
In Egs. (2) and (3), wj; is normalized so thakj,w;;, =1 Fig. 3 shows the cumulative distributioR(x>w;;), instead
[27]. For p=1, our model reduces to the YJBT model with of P(w;;), on a log-linear scale. Fqu=0, P(x>w;;) de-
entirely connectivity-driven weight$27]. For p=0, the cays exponentially in the tail. Recall tha{w) andw;(7; ,t)
weights are driven entirely by the fitness. For p<1, the  show identical behavior aB(k) andk;(t) for p=0, respec-
present model provides a possible stochastic weight assign-
ment scheme in which a newly added node, e.g., representing 104
some newcomer into a web, considers either the popularity
or the fitness of its connected neighbor in assigning

We performed extensive numerical simulations on the

model, with networks up tdN=>5x 10° nodes withm=mj,
=5. For each value op, results are obtained by averaging
over ten independent runs. First, we study the total weight — —~
distribution P(w), which is defined as the probability that a =
randomly selected node has a total weigit The total =
weight of a nodé is given by the sum of the weights of all
links connected to it, i.ew;=X;w;;. Figure 1 shows that
P(w) behaves a®(w)~w 7, with an exponentr that de-
creases from the value of 3 pt=0 continuously a in-
creases. Fop=1, 0=2.4, a result in agreement with that of
YJBT [27]. For p=0, 0=3 (=v) showing thatP(w) fol-

1 L L
lows the same scaling behavior B¢k). YJIBT found that 10104 105 108

the scaling behavior dP(w) depends strongly om [27] in

their model. Here, we found that thme dependence persists t

for all p>0. Only whenp=0, o becomes independent ot FIG. 2. The total weightv;(#; ,t) of a randomly selected node
It is also interesting to study the dynamical behavior ofwith fitnessz; (=0.75) as a function of timeon a log-log scale for

the total weightw;(»;,t) of some nodd with fitness#;. different values op=0,0.5,1.0. The solid line is a guide to the eye

Figure 2 shows thatv;(#»; ,t) grows in time as a power law corresponding to an exponeait=0.5.
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FIG. 3. The cumulative distributioR(x>w;;) of the weights of
individual links as a function ofv;; on a log-linear plot for different
values ofp=0,0.1,0.5,1.0.
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FIG. 4. The weight distributiof®(w) as a function of the total
weightw on a log-log scale for different values p=0,0.5,1.0 in a
model with fitness-dependent link formation mechanism. The two

solid lines are plotted according to the form B(w)~w""/|n w,

tively, and the latter two quantities are not sensitive to thewith exponento’ taking the values 1.82 and 2.25, respectively.

weight assignment scheme. HeR§x>w;;) shows an expo-

nentially decaying behavior, implying that the weighted andthese relationships into Ed4) and noticing thatp(7) is

unweighted models are not entirely identical even for

assumed to be a uniform distribution in the inter{/@|1],

=0. For p>0, the tail deviates from an exponentially de- Ed. (4) becomes

caying form and decays faster psncreases. Fop=1, we

recover the results in the YIBT mod&7]. _ _ 1+ 7,

To understand the different behavior betwesy({ 7, ,t) Wil )= p+2(1=p)7n i ki(t)
and k;(t) [as well as betweerP(w) and P(k)] found in
numerical simulations, we derive an analytical expression for 1

the total weighw;( 7; ,t) of a node with fitnessz; at timet.
Following YJBT[27], w;(%; ,t) can be expressed as

t (o (1
wi( 7, t)=1+ Jt_ojm Jo Pi(m,t")w;i (7, k) e (k)

X p(m)dndkdt’, (4)

whereP;(m,t) is the probability that nodeé is selected for
connection to a new nodeat timet for given m and it is
related toll; in Eq. (1) by a factor ofm. Here,t” is the time
at which the node has been added to the system.( 7, ,k,)
is the weight assigned to the linlke(k) and p(#) are the
probability distributions ok and », respectively. According
to Egs.(2) and (3), the weightw;;(#, ,k;), on the average,
can be written as

7i
n+mn

ki
Wji(ﬂ|7k|):pm+(1—p) 5

for the simple case ofn=2. Generalization to arbitrary
value ofmis straightforward.

From the connectedness of the SF mo@e{m,t), o(k),
and k;(t) are given by[30,27 P;(m,t)=mIL,=k;(t)/2t,
o(k)=mk 2, and ki(t)=m\/t/ti0, respectively. Substituting

+C, (6)

4t\? t
Int? —4In2|n3

whereC is an integration constant. Equati@) implies that
the different scaling behavior iw;(7;,t) andk;(t) are re-
sults of the logarithmic correction term, which can be tuned
by the parametep. For p—0, Eg. (6) gives w;(7;,t)
~27;, In[(1+ 7))/ n]k(t), leading to the same scaling behav-
ior of w;(#;,t) andk;(t), as observed in the simulation re-
sults. Forp=1, the dynamical behavior of;( 7, ,t) deviates
most from that ofk;(t) [27]. For arbitrarym, w;(#;,t) fol-
lows a similar form withm dependence coming into the sec-
ond term on the right-hand side of E@®).

Our model can be generalized to allow for a fitness-
dependent link formation mechanisf@8,29. In the basic
model with fitnesg 28], the probabilityll; depends on both
the connectivity and fithess through

Kk
.= 7iKi

| EI 77|k|.

()

To study the effects of fitness, we study a generalization of
our model by replacing Eq1) by Eq.(7) for link formation,
while keeping Eqs(2) and (3) for weight assignments. The
connectivity distribution follows a generalized power law
[28] with an inverse logarithmic correction of the form
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P(k)~ k~”'/Ink, with 7' =2.255. Figure 4 shows the nu- weight and the total connectivity of a node was derived and

merical results for the total weight distribution(w) for ~ the result was used to explain the features observed in nu-
three different values op=0, 0.5, and 1. It is found that merical simulations. In conclusion, we note that although the
P(w) follows the same generalized power-law formRgk),  distributionsP(w) andP(k) carry different exponents and
but with a different exponenﬁ-’ that depends om. For p Y for p>0 in the models studied her@,(W) still follows a
>0, o'<7y'. Only forp=0, P(w) andP(k) have the same power law, i.e., it has the same functional form Rék).
exponent of o’=2.25~y'. The cumulative distribution However, one would expect that in many complex real sys-
P(x>w;;) of weights is similar to those shown in Fig. 3.  tems, even the functional forms &f(w) and P(k) may be

In summary, we proposed and studied a model ofdifferent. It remains a challenge to construct simple and yet
weighted scale-free networks in which the weights are stonontrivial models that give different behavior for the geo-
chastically determined by the connectivity of nodes withmetrical connection and the extent of connectivity in a net-
probability p and by the fithess of nodes with probability work.
1—p. The model leads to a power-law probability distribu-
tion for the total weight characterized by an exponerihat This work was supported by a DFG Grant TR 3000/3-3.
is highly sensitive to the probabilitg. A similar result was One of us(P.M.H, acknowledges the support from the Re-
also found in a generalized model with a fithess-dependergearch Grants Council of the Hong Kong SAR Government
link formation mechanism. An expression relating the totalunder Grant No. CUHK4241/01P.
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