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Weighted scale-free networks with stochastic weight assignments
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We propose a model of weighted scale-free networks incorporating a stochastic scheme for weight assign-
ments to the links, taking into account both the popularity and fitness of a node. As the network grows, the
weights of links are driven either by the connectivity with probabilityp or by the fitness with probability 1
2p. Numerical results show that the total weight exhibits a power-law distribution with an exponents that
depends on the probabilityp. The exponents decreases continuously asp increases. Forp50, the scaling
behavior is the same as that of the connectivity distribution. An analytical expression for the total weight is
derived so as to explain the features observed in the numerical results. Numerical results are also presented for
a generalized model with a fitness-dependent link formation mechanism.
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Many complex systems, including social, biologica
physical, economic, and computer systems, can be stu
using network models in which the nodes represent the c
stituents and links or edges represent the interactions
tween constituents@1,2#. In random graphs@3,4# as well as in
the small-world networks@5–7#, the connectivity distribution
P(k), which is defined as the probability that a random
selected node has exactlyk edges, shows exponential deca
However, empirical studies on many real networks show
that P(k) exhibits a power-law behavior in the tail@1,2#.
Networks with power-law connectivity distributions a
called scale-free~SF! networks. Examples of SF network
include the World Wide Web@8–10#, scientific citations@11#,
cells @12,13#, the web of actors@14#, and the web of human
sexual contacts@15#. The first model of SF networks wa
proposed by Baraba´si and Albert~BA! @16#. In BA networks,
two important ingredients are included, namely, the netwo
are continuouslygrowing by adding in new nodes as tim
evolves, and the newly added nodes arepreferentially at-
tachedto the highly connected nodes. The idea of incorp
rating preferential attachment in a growing network has
to proposals of a considerable number of models of SF
works @17–23#.

In most growing network models, all the links are cons
ered equivalent. However, many real systems display dif
ent interaction strengths between nodes. In systems suc
the social acquaintance network@24#, the web of scientists
with collaborations@25# and ecosystems@26#, links between
nodes may be different in their influence. Therefore, r
systems are best described by weighted growing netw
with links of nonuniform strengths. Only recently, a class
models of weighted growing networks was proposed
Yook, Jeong, Baraba´si, and Tu ~YJBT! @27#. In the basic
YJBT model of weighted scale-free~WSF! networks, both
the topology and the weight are driven by the connectiv
according to the preferential attachment rule as the netw
grows. It was found that the total weight distribution follow
a power lawP(w);w2s, with an exponents different from
the connectivity exponentg. The difference in the exponent
1063-651X/2003/67~4!/040102~4!/$20.00 67 0401
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is a result of strong logarithmic corrections, and asympto
cally ~i.e., in the long time limit! the weighted and un-
weighted models are identical@27#.

In real systems, one would expect that a link’s weig
and/or the growth rate in the number of links of a no
depend not only on the ‘‘popularity’’ of the node represent
by the connectivity, but also on some intrinsic quality of t
node. The intrinsic quality can be collectively represented
a parameter referred to as the ‘‘fitness’’@28,29#. Besides
popularity, the competitiveness of a node may depend, tak
for example a node being an individual in a certain comm
nity, on personality, survival skills, character, etc. A new
added node may take into account one of these factor
their decision on making connections with existing nod
and on the importance of each of the established lin
Clearly, there is always a spectrum of personality among
nodes and therefore a distribution in the fitness. While o
may argue that factors determining the popularity may ov
lap with those in fitness, it is not uncommon that popular
is not the major factor on the importance of a connecti
For example, we often hear that a popular person may a
ally have very few good friends, and an influential and po
erful figure in a network may often be someone very diffic
to work with. In this Rapid Communication, we generali
the WSF model of YJBT to study the effects of fitness. In o
model, the weights assigned to the newly added links
determined stochastically either by the connectivity w
probability p or by the fitness of nodes with probability
2p. The scaling behavior of the total weight distribution
found to depend sensitively on the weight assignm
mechanism through the parameterp.

The topological structure of our model follows that of th
BA model of SF networks@16#. A small number (m0) of
nodes are created initially. At each time step, a new nodj
with m (m<m0) links is added to the network. Thesem links
will connect tom preexisting nodes according to the prefe
ential attachment rule that the probabilityP i of an existing
node i being selected for connection is proportional to t
total number of linkski that nodei carries, i.e.,
©2003 The American Physical Society02-1
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P i5
ki

(
l

kl

. ~1!

The procedure creates a network withN5t1m0 nodes and
mt links after t time steps. Geometrically, the network di
plays a connectivity distribution with a power-law decay
the tail with an exponentg53, regardless of the value ofm
@16,30#.

A weighted growing network is constructed by assigni
weights to the links as the network grows. To incorporat
fitness-dependent weight assignment mechanism, a fit
parameterh i is assigned to each node@28,29#. The fitnessh i
is chosen randomly from a distributionr(h), which is as-
sumed to be a uniform distribution in the interval@0,1# for
simplicity. With probability p, each newly established lin
j↔ i is assigned a weightwji (5wi j ) given by

wji 5
ki

(
$ i 8%

ki 8

, ~2!

where($ i 8% is a sum over them nodes to which the new nod
j is connected. With probability 12p, wji is determined by
the fitness through

wji 5
h i

(
$ i 8%

h i 8

. ~3!

In Eqs. ~2! and ~3!, wji is normalized so that($ i 8%wji 851
@27#. For p51, our model reduces to the YJBT model wi
entirely connectivity-driven weights@27#. For p50, the
weights are driven entirely by the fitness. For 0,p,1, the
present model provides a possible stochastic weight ass
ment scheme in which a newly added node, e.g., represen
some newcomer into a web, considers either the popula
or the fitness of its connected neighbor in assigningwji .

We performed extensive numerical simulations on
model, with networks up toN553105 nodes withm5m0
55. For each value ofp, results are obtained by averagin
over ten independent runs. First, we study the total we
distributionP(w), which is defined as the probability that
randomly selected node has a total weightw. The total
weight of a nodei is given by the sum of the weights of a
links connected to it, i.e.,wi5( jwi j . Figure 1 shows tha
P(w) behaves asP(w);w2s, with an exponents that de-
creases from the value of 3 atp50 continuously asp in-
creases. Forp51, s52.4, a result in agreement with that o
YJBT @27#. For p50, s53 (5g) showing thatP(w) fol-
lows the same scaling behavior asP(k). YJBT found that
the scaling behavior ofP(w) depends strongly onm @27# in
their model. Here, we found that them dependence persist
for all p.0. Only whenp50, s becomes independent ofm.

It is also interesting to study the dynamical behavior
the total weightwi(h i ,t) of some nodei with fitnessh i .
Figure 2 shows thatwi(h i ,t) grows in time as a power law
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with a p-dependent exponentd. For p.0, d.b, whereb
51/2 is the exponent characterizing the dynamical beha
of the connectivityki(t) @16#. For p50, wi(h i ,t) shows the
same scaling behavior aski(t) with d5b51/2. For 0,p
,1, d also depends on the node’s fitnessh i . Thus, the total
weight actually shows a multiscaling dynamical behavior
the range 0,p,1 @28#.

The probability distributionP(wi j ) of the weightswi j is
also worth investigating. To suppress statistical fluctuatio
Fig. 3 shows the cumulative distribution,P(x.wi j ), instead
of P(wi j ), on a log-linear scale. Forp50, P(x.wi j ) de-
cays exponentially in the tail. Recall thatP(w) andwi(h i ,t)
show identical behavior asP(k) andki(t) for p50, respec-

FIG. 1. The weight distributionP(w) as a function of the total
weight w on a log-log scale for different values ofp
50,0.1,0.5,1.0. The two solid lines are guides to the eye co
sponding to the exponentss52.4 and 3.0, respectively.

FIG. 2. The total weightwi(h i ,t) of a randomly selected nodei
with fitnessh i (50.75) as a function of timet on a log-log scale for
different values ofp50,0.5,1.0. The solid line is a guide to the ey
corresponding to an exponents50.5.
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tively, and the latter two quantities are not sensitive to
weight assignment scheme. Here,P(x.wi j ) shows an expo-
nentially decaying behavior, implying that the weighted a
unweighted models are not entirely identical even forp
50. For p.0, the tail deviates from an exponentially d
caying form and decays faster asp increases. Forp51, we
recover the results in the YJBT model@27#.

To understand the different behavior betweenwi(h i ,t)
and ki(t) @as well as betweenP(w) and P(k)] found in
numerical simulations, we derive an analytical expression
the total weightwi(h i ,t) of a nodei with fitnessh i at timet.
Following YJBT @27#, wi(h i ,t) can be expressed as

wi~h i ,t !511E
t i
0

t E
m

`E
0

1

P̃i~m,t8!wji ~h l ,kl !%~kl !

3r~h l !dh ldkldt8, ~4!

where P̃i(m,t) is the probability that nodei is selected for
connection to a new nodej at time t for given m and it is
related toP i in Eq. ~1! by a factor ofm. Here,t i

0 is the time
at which the nodei has been added to the system.wji (h l ,kl)
is the weight assigned to the link.%(k) and r(h) are the
probability distributions ofk andh, respectively. According
to Eqs.~2! and ~3!, the weightwji (h l ,kl), on the average
can be written as

wji ~h l ,kl !5p
ki

ki1kl
1~12p!

h i

h i1h l
~5!

for the simple case ofm52. Generalization to arbitrary
value ofm is straightforward.

From the connectedness of the SF model,P̃i(m,t), %(k),
and ki(t) are given by @30,27# P̃i(m,t)5mP i5ki(t)/2t,
%(k)5mk22, andki(t)5mAt/t i

0, respectively. Substituting

FIG. 3. The cumulative distributionP(x.wi j ) of the weights of
individual links as a function ofwi j on a log-linear plot for different
values ofp50,0.1,0.5,1.0.
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these relationships into Eq.~4! and noticing thatr(h) is
assumed to be a uniform distribution in the interval@0,1#,
Eq. ~4! becomes

wi~h i ,t !.Fp12~12p!h i ln
11h i

h i
Gki~ t !

2
1

4
pF S ln

4t

t i
0 D 2

24 ln 2 ln
t

t i
0G1C, ~6!

whereC is an integration constant. Equation~6! implies that
the different scaling behavior inwi(h i ,t) and ki(t) are re-
sults of the logarithmic correction term, which can be tun
by the parameterp. For p→0, Eq. ~6! gives wi(h i ,t)
;2h i ln@(11hi)/hi#ki(t), leading to the same scaling beha
ior of wi(h i ,t) andki(t), as observed in the simulation re
sults. Forp51, the dynamical behavior ofwi(h i ,t) deviates
most from that ofki(t) @27#. For arbitrarym, wi(h i ,t) fol-
lows a similar form withm dependence coming into the se
ond term on the right-hand side of Eq.~6!.

Our model can be generalized to allow for a fitnes
dependent link formation mechanism@28,29#. In the basic
model with fitness@28#, the probabilityP i depends on both
the connectivity and fitness through

P i5
h iki

(
l

h lkl

. ~7!

To study the effects of fitness, we study a generalization
our model by replacing Eq.~1! by Eq.~7! for link formation,
while keeping Eqs.~2! and ~3! for weight assignments. The
connectivity distribution follows a generalized power la
@28# with an inverse logarithmic correction of the form

FIG. 4. The weight distributionP(w) as a function of the total
weightw on a log-log scale for different values ofp50,0.5,1.0 in a
model with fitness-dependent link formation mechanism. The t

solid lines are plotted according to the form ofP(w);w2s8/ ln w,
with exponents8 taking the values 1.82 and 2.25, respectively.
2-3
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P(k); k2g8/ ln k, with g852.255. Figure 4 shows the nu
merical results for the total weight distributionP(w) for
three different values ofp50, 0.5, and 1. It is found tha
P(w) follows the same generalized power-law form asP(k),
but with a different exponents8 that depends onp. For p
.0, s8,g8. Only for p50, P(w) andP(k) have the same
exponent of s852.25;g8. The cumulative distribution
P(x.wi j ) of weights is similar to those shown in Fig. 3.

In summary, we proposed and studied a model
weighted scale-free networks in which the weights are s
chastically determined by the connectivity of nodes w
probability p and by the fitness of nodes with probabili
12p. The model leads to a power-law probability distrib
tion for the total weight characterized by an exponents that
is highly sensitive to the probabilityp. A similar result was
also found in a generalized model with a fitness-depend
link formation mechanism. An expression relating the to
,

-

pa

-
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weight and the total connectivity of a node was derived a
the result was used to explain the features observed in
merical simulations. In conclusion, we note that although
distributionsP(w) andP(k) carry different exponentss and
g for p.0 in the models studied here,P(w) still follows a
power law, i.e., it has the same functional form asP(k).
However, one would expect that in many complex real s
tems, even the functional forms ofP(w) and P(k) may be
different. It remains a challenge to construct simple and
nontrivial models that give different behavior for the ge
metrical connection and the extent of connectivity in a n
work.
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